
Theorem 1. If the system input satisfies R(ψij)vj − vi 6= 0, all relative states of the Kalman filter converge and
are exponentially bounded.

Proof. The observability determinant (9) is not zero when R(ψij)vj − vi 6= 0. Therefore, the system satisfies the
nonlinear observability rank condition. According to [1], the corresponding estimator converges exponentially and
the estimation error is bounded. The detailed convergence proof is omitted for the weak observable systems as
many references have already proved it.

Theorem 2. For multiple robots with dynamic estimation model (2), if the control inputs follow the initialization
process (10) and there is an unobservable condition R(ψij)vj−vi = 0, then the estimated relative state of the Kalman
filter will converge to an unobservable subspace, i.e.

lim
t→∞

X̂ij(t)→ {x, y, ψ|
√
x2 + y2 = zGT, ψ = ψGT}, (11)

and all states [xij , yij , ψij ]
T drift slowly once they reach the subspace. zGT and ψGT denote a constant distance

measurement and constant relative yaw.

Proof. The derivative of the estimate state X̂ can be written as:

˙̂
Xij = f(X̂ij , Uij) +K(z − h(X̂ij)). (12)

According to [2], the Kalman gain K and the derivative of the error covariance matrix P can be represented by

K = PHTR−1

Ṗ = AP + PAT − PHTR−1HP +BQBT .
(13)

Based on the definition of the Kalman function, the optimal gain K always satisfies the following equations:

∂tr(P)

∂K
= 0, P = cov(X− X̂) = cov(X̃), (14)

Therefore, if a unique equilibrium space of state error X̃ can be found, the relative estimation under the unob-
servable condition will converge to that space.

The equilibrium space can be found by setting ˙̃X = Ẋij− ˙̂
Xij to zero. Ẋij = [0, 0]T can be derived by combining

(2), zero yaw rates assumption, and R(ψij)vj − vi = 0. Hence, substitute (12) into ˙̃X = − ˙̂
Xij = 0 which yields[

R(ψ̂ij)vj − vi
0

]
+K(z − h(X̂)) = 0. (15)

A two-dimensional time-invariant solution for Eq. 15 is:{
x̂2ij + ŷ2ij = z2GT,

ψ̂ij = ψGT.
(16)

Here we prove that (16) is the unique time-invariant solution by studying all cases. Case 1: R(ψ̂ij)vj − vi = 0 and

K = 0; Case 2: R(ψ̂ij)vj − vi = 0 and z − h(X̂) = 0; Case 3: R(ψ̂ij)vj − vi 6= 0 and K(z − h(X̂)) 6= 0, but they
sum to zero.

Case 1 holds only if PHT = 0 according to (13), which furthermore leads to Ṗ = AP + PAT +BQBT . Hence,
P is independent of distance measurement z from (3), while H is dependent on z from (5). Since H always varies
over time due to measurement noise while P does not, PHT = 0 will be a transient condition. Case 2 corresponds
to the time-invariant solution in (16). In case 3, K is time variant as it contains the integration of state variables
which are in matrix A, B, and H according to (13). Thus, this solution is also transient. Therefore, (16) is the
unique time-invariant equilibrium state space, and the estimated states will converge to the equilibrium space as
shown in (11).
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In a formation flight, the reference setpoint is p̄ji for the ith robot in the frame of the jth robot. Thus, the
control error of the relative position is

eij = p̂ij − p̄ij = p̂ij +R(ψ̂ij)p̄ji, (17)

where p̂ij is the relative position estimation. Considering the relative system dynamics ṗij = R(ψij)vj−vi−Sripij ,
a dynamic inversion formation control law is proposed as

vi = kceij +R(ψ̂ij)vj − Srip̂ij , (18)

where kc denotes the control gain, which leads to lim eij → 0. Therefore, the real relative position pij ≈ p̂ij =
−eij −R(ψGT)p̄ji approximates a constant, and the following holds:

ṗij = 0 = R(ψij)vj − vi. (19)

This leads to a zero determinant in (9) such that the stable states of formation control cause an unobservable
condition for the relative estimation system.

Theorem 3. Given the converged state estimation pij and ψij, according to Theorem 2, the invariant ψ̂ij and
the estimation drift in Problem 1. The estimation error will remain converged and bounded even if the multi-robot
system is under unobservable maneuvers such as the formation flight.

Proof. After the initialization and the formation control, relative states satisfy pij = p̂ij = p̄ij . There are two
unobservable cases.

Case 1: Define the estimation drift in Problem 1 as ∆pij . The incorrect relative estimation has the following
relationship to the real and reference relative positions:

p̂ij = ∆pij + pij 6= p̄ij . (20)

Substitute (17) into (18), and consider the zero yaw rate assumption, we can get

vi = kc(p̂ij − p̄ij) +R(ψ̂ij)vj . (21)

In view of (19) and (20), the state will become observable again due to the ensuing control actions:

R(ψij)vj − vi = kc(p̄ij − p̂ij) 6= 0. (22)

Hence, based on Theorem 1, the estimated relative position p̂ will converge again to the real value p.
Case 2: The system is possibly unobservable when p̂ = p̄ but p̂ 6= p, which means the relative estimation is

incorrect and the system is unobservable. In this case, the relative position will converge to the subspace (the
circle trajectory) according to Theorem 2. However, the measurement noise on v1 and vi is omnidirectional, so it
has components orthogonal to the equilibrium state, leading to case 1 and hence observability. Moreover, external
disturbances and actuation noise will lead to non-zero R(ψi1)v1 − vi, and hence observability.
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