Theorem 1. If the system input satisfies $R(\psi_{ij})v_j - v_i \neq 0$, all relative states of the Kalman filter converge and are exponentially bounded.

Proof. The observability determinant (9) is not zero when $R(\psi_{ij})v_j - v_i \neq 0$. Therefore, the system satisfies the nonlinear observability rank condition. According to [\[1\]](#page-1-0), the corresponding estimator converges exponentially and the estimation error is bounded. The detailed convergence proof is omitted for the weak observable systems as many references have already proved it. □

Theorem 2. For multiple robots with dynamic estimation model (2) , if the control inputs follow the initialization process (10) and there is an unobservable condition $R(\psi_{ij})v_j-v_i = 0$, then the estimated relative state of the Kalman filter will converge to an unobservable subspace, i.e.

$$
\lim_{t \to \infty} \hat{X}_{ij}(t) \to \{x, y, \psi | \sqrt{x^2 + y^2} = z_{\text{GT}}, \psi = \psi_{\text{GT}}\},\tag{11}
$$

and all states $[x_{ij}, y_{ij}, \psi_{ij}]^T$ drift slowly once they reach the subspace. z_{GT} and ψ_{GT} denote a constant distance measurement and constant relative yaw.

Proof. The derivative of the estimate state \hat{X} can be written as:

$$
\dot{\hat{X}}_{ij} = f(\hat{X}_{ij}, U_{ij}) + K(z - h(\hat{X}_{ij})).
$$
\n(12)

According to [\[2\]](#page-1-1), the Kalman gain K and the derivative of the error covariance matrix P can be represented by

$$
K = PH^{T}R^{-1}
$$

\n
$$
\dot{P} = AP + PA^{T} - PH^{T}R^{-1}HP + BQB^{T}.
$$
\n(13)

Based on the definition of the Kalman function, the optimal gain K always satisfies the following equations:

$$
\frac{\partial \text{tr}(P)}{\partial K} = 0, \ P = \text{cov}(X - \hat{X}) = \text{cov}(\tilde{X}), \tag{14}
$$

Therefore, if a unique equilibrium space of state error \tilde{X} can be found, the relative estimation under the unobservable condition will converge to that space.

The equilibrium space can be found by setting $\dot{\tilde{X}} = \dot{X}_{ij} - \dot{\tilde{X}}_{ij}$ to zero. $\dot{X}_{ij} = [0,0]^T$ can be derived by combining (2), zero yaw rates assumption, and $R(\psi_{ij})v_j - v_i = 0$. Hence, substitute [\(12\)](#page-0-0) into $\dot{\tilde{X}} = -\dot{\tilde{X}}_{ij} = 0$ which yields

$$
\begin{bmatrix} R(\hat{\psi}_{ij})v_j - v_i \\ 0 \end{bmatrix} + K(z - h(\hat{X})) = 0.
$$
 (15)

A two-dimensional time-invariant solution for Eq. [15](#page-0-1) is:

$$
\begin{cases}\n\hat{x}_{ij}^2 + \hat{y}_{ij}^2 = z_{\text{GT}}^2, \\
\hat{\psi}_{ij} = \psi_{\text{GT}}.\n\end{cases} \tag{16}
$$

Here we prove that [\(16\)](#page-0-2) is the unique time-invariant solution by studying all cases. Case 1: $R(\hat{\psi}_{ij})v_j - v_i = 0$ and $K = 0$; Case 2: $R(\hat{\psi}_{ij})v_j - v_i = 0$ and $z - h(\hat{X}) = 0$; Case 3: $R(\hat{\psi}_{ij})v_j - v_i \neq 0$ and $K(z - h(\hat{X})) \neq 0$, but they sum to zero.

Case 1 holds only if $PH^T = 0$ according to [\(13\)](#page-0-3), which furthermore leads to $\dot{P} = AP + PA^T + BQB^T$. Hence, P is independent of distance measurement z from (3), while H is dependent on z from (5). Since H always varies over time due to measurement noise while P does not, $PH^T = 0$ will be a transient condition. Case 2 corresponds to the time-invariant solution in (16) . In case 3, K is time variant as it contains the integration of state variables which are in matrix A, B , and H according to [\(13\)](#page-0-3). Thus, this solution is also transient. Therefore, [\(16\)](#page-0-2) is the unique time-invariant equilibrium state space, and the estimated states will converge to the equilibrium space as \Box shown in (11) .

In a formation flight, the reference setpoint is \bar{p}_{ji} for the ith robot in the frame of the jth robot. Thus, the control error of the relative position is

$$
e_{ij} = \hat{p}_{ij} - \bar{p}_{ij} = \hat{p}_{ij} + R(\hat{\psi}_{ij})\bar{p}_{ji},
$$
\n(17)

where \hat{p}_{ij} is the relative position estimation. Considering the relative system dynamics $\dot{p}_{ij} = R(\psi_{ij})v_j - v_i - Sr_i p_{ij}$, a dynamic inversion formation control law is proposed as

$$
v_i = k_c e_{ij} + R(\hat{\psi}_{ij}) v_j - S r_i \hat{p}_{ij}, \qquad (18)
$$

where k_c denotes the control gain, which leads to lim $e_{ij} \to 0$. Therefore, the real relative position $p_{ij} \approx \hat{p}_{ij}$ $-e_{ij} - R(\psi_{GT})\bar{p}_{ji}$ approximates a constant, and the following holds:

$$
\dot{p}_{ij} = 0 = R(\psi_{ij})v_j - v_i.
$$
\n(19)

This leads to a zero determinant in (9) such that the stable states of formation control cause an unobservable condition for the relative estimation system.

Theorem 3. Given the converged state estimation p_{ij} and ψ_{ij} , according to Theorem [2,](#page-0-5) the invariant $\hat{\psi}_{ij}$ and the estimation drift in Problem 1. The estimation error will remain converged and bounded even if the multi-robot system is under unobservable maneuvers such as the formation flight.

Proof. After the initialization and the formation control, relative states satisfy $p_{ij} = \hat{p}_{ij} = \bar{p}_{ij}$. There are two unobservable cases.

Case 1: Define the estimation drift in Problem 1 as Δp_{ij} . The incorrect relative estimation has the following relationship to the real and reference relative positions:

$$
\hat{p}_{ij} = \Delta p_{ij} + p_{ij} \neq \bar{p}_{ij}.
$$
\n
$$
(20)
$$

Substitute [\(17\)](#page-1-2) into [\(18\)](#page-1-3), and consider the zero yaw rate assumption, we can get

$$
v_i = k_c(\hat{p}_{ij} - \bar{p}_{ij}) + R(\hat{\psi}_{ij})v_j.
$$
\n(21)

In view of [\(19\)](#page-1-4) and [\(20\)](#page-1-5), the state will become observable again due to the ensuing control actions:

$$
R(\psi_{ij})v_j - v_i = k_c(\bar{p}_{ij} - \hat{p}_{ij}) \neq 0.
$$
\n(22)

Hence, based on Theorem [1,](#page-0-6) the estimated relative position \hat{p} will converge again to the real value p.

Case 2: The system is possibly unobservable when $\hat{p} = \bar{p}$ but $\hat{p} \neq p$, which means the relative estimation is incorrect and the system is unobservable. In this case, the relative position will converge to the subspace (the circle trajectory) according to Theorem [2.](#page-0-5) However, the measurement noise on v_1 and v_i is omnidirectional, so it has components orthogonal to the equilibrium state, leading to case 1 and hence observability. Moreover, external disturbances and actuation noise will lead to non-zero $R(\psi_{i1})v_1 - v_i$, and hence observability. \Box

References

- [1] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, "Stochastic stability of the discrete-time extended kalman filter," IEEE Transactions on Automatic control, vol. 44, no. 4, pp. 714–728, 1999.
- [2] K. Reif, F. Sonnemann, and R. Unbehauen, "An ekf-based nonlinear observer with a prescribed degree of stability," Automatica, vol. 34, no. 9, pp. 1119–1123, 1998.